توضیحات

توجه : به همراه فایل word این محصول فایل پاورپوینت (PowerPoint) و اسلاید های آن به صورت هدیه ارائه خواهد شد

 آشنایی با دستگاه ها و ماشین های تزریق پلاستیک دارای 36 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد آشنایی با دستگاه ها و ماشین های تزریق پلاستیک  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

ماشین های تزریقی
وظایف ماشین های تزریق:
-    آماده سازی مواد قابل استفاده و فشارهای مورد نیاز مرحله تزریق
-    پر كردن محفظه قالب ماشین تزریق با مواد و هدایت حركات باز كردن قالب، بیرون انداختن قطعه ریختگی و همچنین بستن و نگهداشتن قالب.
در مورد اول به عهده واحد تزریق بوده، در صورتی كه مورد سوم بهوسیله واحد بستن انجام می شود .
واحد تزریق:
واحد تزریق وظیفه دارد، مواد قالب را كه بیشتر به صورت گرانول است به جلو رانده، ذوب، هموژنیزه و همچنین خمیری كرده و بالاخره به درون قالب فشار دهد .
به این منظور در یك اسكترودر حلزونی پیستونی ، یك حلزون سه ناحیه ای در داخل یك سیلندر می چرخد. مواد گرانول ناحیه مكش، تراكم و رانش را طی كرده تا در محفظه جلویی حلزون به عنوان یك مذاب قابل انجام كار آماده شود.
پس از مرحله خمیری شدن، حلزونی متوقف می شود، تا اینكه به وسیله یك سیلندر هیدرولیكی با یك حركت محوری سریع تا ناحیه 1000 mm/s، مذاب به محفظه قالب فشرده شود .
كمیتهای تنظیم
تعداد دور حلزونی علاوه بر قطر حلزون به اندازه سرعت محیطی كه از ظرف شركت های سازنده مواد داده می شود بستگی دارد (جدول 1).
جدول 1: كمیت های تنظیم برای خمیر كردن
مواد قالب   
PVC    PMMA   
150… 180    200 … 250    دمای مواد T به 
0, 08 … 0,1    0, 3    سرعت محیطی Vmax به m/s
40 …. 80    80 … 120    فشار ایست P به Bar
مقدار مقاوت مواد درنوك حلزونی در مرحله تزریق تحت واژه فشار ایست بیان می شود. این فشار فشاری است كه درون مواد تجمعی در محفظه جلویی حلزونی ایجاد می شود. این فشار باغث می شود كه حلزونی در حین خمیر كردن مواد به سمت عقب رانده شود. حركت حلزونی به سمت عقب موقعی پایان می یابد كه مقدار مواد تجمی در محفظه جلویی حلزون به حدی برسد كه محفظه قالب را پر كند (شكل3). مقدار تنظیمی فشار ایست، تحت شرایطی به ویسكوزیته و مقدار حسایست حرارتی مواد بستگی دارد (جدول 1).
نقاط و ناحیه ای كه دمای سیلندر می تواند تنظیم شود، د جدول 2 با بیان یك مثال از مواد PVC، نشان داده شده است.
جدول 2: دماهای سیلندر برای PVC به C0
محدوده قیف تغذیه    MH1    MH2    MH3    DH
30..4    14…160    160…17    16…10    170..210
MH: گرمكن پوششی، DH: گرمكن نازل دار
واحد بستن
واحد بستن، نیمه های قالب را كه به صفحات روبند متحرك و ثابت مرتبط هستند  در بر می گیرد. باز كردن بستن و نگهداشتن قالب به وسیله یك سیستم اهرم مفصلی یا با یك سیستم محركه تمام هیدرولیك انجام می شود.
نیروی بستن- نیروی نگهداری
نیروی بستن عبارت است از نیرویی كه میلهای راهنما پس از مرحله بستن تحت تنش قرار می گیرند، میل راهنما به همان اندازه كه قالب فشرده می شود دچار افزایش طول می شود . موقع تزریق مواد یك نیروی باز كننده (FA = pw:A) FA به واسطه وجود فشار داخلی میلهای راهنما را سبب می شود. مجموع نیروهایی كه موقع عمل تزریق به میلهای راهنما وارد می شوند، تحت نام نیروی نگهداری عنوان می شوند. این نیور همیشه ازنیروی بستن بیشتر است.
اگر نیروی باز كندنه از نیروی نگهدرای بیشتر باشد تجهیزات بین دو نیمه قالب بلند شده و مذاب از درز قالب ها بیرون زده كه منجر به ایجاد پلیسه یا تشكیل پوسته های شناور می شود.این پدیده را اضافه تزریق یا اضافه برریزی می نامند.
با وجود این باید برای جلوگیری از یك شكم دادگی صفحات حامل نیمه های قالب، مقدار نیروی نگهداری حتی الامكان در حد كم تنظیم شود. این شكم دادگی به این ترتیب ایجاد می شود كه فشار داخلی قالب را موقع تزریق سعی بر این دارد كه نیمه های قالب را در محدوده محفظه از یكدیگر جدا كند. در صورتی كه نیروهای نگهداری فقط در محدوده انتقال مستقیم نیرو موثر است . مقدار این شكم دادگی به ویژه در صفحات با صلبیت پایین و در محدوده مقابل دهانه مركزی قالب مربوطه به بخش نازل و قبل از همه در نقطه مفقابل سیستم پران، زیاد است . پدیده  شكم دادگی باعث تشكیل پلیسه و نیز سبب می شود كه فشار تزریق در حد بیشترین مقدار خود نتواند انتخاب شود.
 یكی از روش های رفع عیب این است كه غلتكهای تكیه گاهی با اضافه اندازه 0,03 mm تا 0.05 mm در مقابل تكیه گاه های خارجی طراحی شود (شكل 4).
همچنین برای تخلیه هوای محفظه قالب موقع تزریق از طریق سطوح تماش نیمه  های قالب، نیروی بستن باید حتی الامكان كم باشد.
تلرانسهای اندازه در محله تزریق
تلرانس های قالب دستیابی، بیشتر به انقباض، مواد تزریق و نوع اندازه ها بستگی داشته كه در این ارتباط كیفیت ماشین تزریق و قالب نیز نقش دارند.
مثلا رعایت تلرانس های كوچكتر در مواد آمورف نسبت به مواد نیمه كریستال آسانتر است. همچنین اندازه های وابسته به قالب دقیقتر می توان ایجاد كرد تا اندازه هایی كه به قالب وابسته نبود و باید موقع بسته بودن، بین اجزای متحرك قالب به وجود آید.
DIN 16091 در تعیین تلرانس های ابتدا گروه های تلرانس را در ارتباط با مواد تزریق و ضریب انقباض (به جداول و استاندارد ر.ك) تشیكل می شده، آنگاه متناسب با این گروه های تلرانسی و نوع اندازه تعیین می شده انحرافات مجاز و محدوده های مختلف اندازه نامی مرتب می شوند. جدول 1 نشان می دهد كه چگونه می توان تلرانسی عمومی برای اندازه مربوط به قالب a كه باید 35 mm باشد، به دست آورد.
جدول 1: بدست آوردن تلرانس عمومی
گروه تلراسن 150    پلی اتیلن
رقم مشخصه 3    اندازه وابسته به قالب
30mm…40mm    محدوده اندازه نامی
+ 0,39 mm    تلرانس عمومی
اصول طراحی قطعات تزریقی
•    ضخامت دیوارها باید به اندازه كافی زیاد باشد تا قبل از اینكه مواد شدیداً خنك یا پخته شوند، بتوانند محفظه قالب را با اطمینان پر كنند. بنابراین باید ضخامت حداقل دیواره متناسب با طول مسیر جریان در قالب و قابلیت جریان مواد تزریق انتخاب.
•    ضخامت دیواره قطعات تزریقی باید همه جا یكسان باشد. مقدار این ضخامت در حالت معمولی 1mm –3mm و در قطعات بزرگ 3mm-4mm است. ضخامت های زیر 0,4mm و بالای  mm 8 فقط در شرایط كاری ویژه ای قابل تولید هستند .
باید از هرگونه تجمع موضعی مواد و تغییر مقطع ناگهانی پرهیز شود. زیرا این پدیده می تواند روی سطوح قطعه كار منجر به نقاط تو رفته و در داخل قطعه كار منجر به تشكیل مك شود . علاوه بر این در ضخامت های نامساوی دیواره ها درنتیجه خنك شدن غیر یكنواخت، تنش های داخلی در آن ایجاد شده كه می تواند در گوشه های تند و لبه ها به تشكیل ترك هایی منجر شود. اگر یك قطعه تزریقی باید پایداری بالاتری داشته باشد، می توان به وسیله پره های تقویت آن را عملی كرد (شكل c3).
•    برای اینكه بتوان قطعه تزریقی را به سادگی و سریع از قالب خارج كرد، تمام سطوح قطعه كار كه در جهت باز دشن قالب قرار دارند، باید شیب جزئی داشته باشند. علاوه بر این بایستی اطمینان حاصل شود كه قطعه تزریقی موقع باز شدن قالب روی نیمه مربوط به واحد بستن نشسته و به وسیله تجهیزات پران خارج شود .
مقادیر شیب در جدول 1 فقط به عنوان  مقادیر تقریبی هستند، زیرا این مقادیر نه فقط به ارتفاع قطعه تزریقی، بلكه به شكل و قطر آن، مقدار انقباض و مرحله خروج قطعه كار از قالب نیز بستگی دارد.
انقباض
در تعیین محفظه قالب باید انقباض و انقباض نهایی احتمالی مورد توجه آن قرار گیرد.
تغییر اندازه قطعات در اثر جمع شدن مواد موقع خنك شدن را انقباض گویند. در تعیین انقباض (با جدول 1 مقایسه شود) این مشكل نیز به آن اضافه می شود كه باید اختلاف انقباض و نیز انقباض نهایی مورد توجه قرار گیرد.
اختلاف انقباضی هنگامی بروز می كند كه انقباضات در جهت جریان و به طور عمود بر ان برابر نباشند. اختلاف انقباض عبارت است از اختلاف طولی و عرضی انقباض.
تفاوت اندازه یك قطعه تزریقی كه تا دمای محیط خنك شده، از اندازه ای كه همان قطعه تحت یك دم.ای معین قرار گیرد، را انقباض نهایی می گویند. ابعاد قطعه تمام شده در اثر انقباض نهایی باز هم كوچكتر می شوند.
تعیین مقدار عددی انقباض خیلی مشكل است، زیرا چند عامل موثر به طور همزمان در این رابطه تاثیر دارند.
به عنوان مثال ترموپلاستهای آمورف (مثلا پلیستیرول) تقریبا بدون وابستگی به شرایط خارجی، انقباض كمتری دارند. مواد مصنوعی نیمه كریستال (مثلا پلی اتیلن) بالعكس محدوده انقباض بزرگتری دارند (جدول 1). فشارهای تزریق و نهایی بیشترین اثر را بر پدیده انقباض دارند. هر چقدر این فشارها بزرگتر باشند به همان نسبت هم انقباض كمتر می شود.
دمای قالب عامل موثر دیگری بر انقباض به شمار می رود. هر قدر اندازه این دما بالاتر باشد، به همان نسبت هم تشكیل كریستال مناسبتر، ولی انقباض حاصله بیشتر می شود.
جدول 1: مقادیر مهم برای شرایط فرایند كاری تزریق
شیب به %    انقباض به %    دمای قالب 
دمای مواد 
فشار نهایی pN به bar    فشار تزریق ps به bar    مواد تزریق
1,5    Ca. 0,45    10…5    150...280    (0,3..0,6).Ps    1000…1500    پلیستیرول
----    0,4 …0,7    50….85    180-240    (0,3..0,6).Ps    1200…1500    ABS
0,2…2    1,5…2    20….60    140-350    (0,3..0,6).Ps    1200…1500    پلی اتیلن
1,5    1,2…2,2    20…60    150-260    (0,4..0,6).Ps    1200…1800    پروپایلن
1    0,7…0,8    58…120    230...320    (0,4..0,6).Ps    1300…1500    پلی كربنات
1,5    0,5…0,7    20…60    140...210    (0,3..0,6).Ps    800…1600    پلی‌ونیل كلراید
ساختمان قالب های تزریق
قالبهای تزریق  از نظر ساختمان مانند قالبهای دیاكاست می باشند. این قالبها اساساً از نیمه های متحرك و ثابت، ماهیچه ها، كشوییها، سیستم راهگاهی، تجهیزات بیرون انداز و نیز سیستم خنك كن قالب تشكیل شده است.
نازلها
وظیفه ارتباط سیلندر تزریق و قالب به عهده نازلها است. نازلها طوری محكم به بوش راهگاه فشار داده می شوند كه بتوانند افزون بر این نقش در یك ماده آب بندی هم داشته باشند. علاوه بر این نازلها باید مذاب آماده را حتی الامكان بدون اتلاف فشار و دما به محفظه قالب هدایت كنند.
در اثر تماس نازل با قالب خنك،مقدار زیادی گرما از بدنه نازل و در نتیجه از مذاب گرفته شود. استفاده از نازل حرارتی و همچنین بلند كردن نازل و قالب پس از اتمام زمان اعمال فشار نهایی اقدام موثری در این رابطه است .
نازل بار
اگر چقرمگی مذاب اجازه دهد، بیشتر از نازل بار استفاده می كنند.  به دلیل كانالهای صاف، اتلاف فشار و دما خیلی پایین است. همچنین نازل باز به سادگی قابل تمیز شدن و شستشو است. خطر اینكه آیا مذاب از نازل می تواند خارج شود، با كوچكتر شدن سوراخ نازل (تقریباً 3 mm تا 8 mm) پیوسته كاهش می یابد.
اگر مذاب خیلی رقیق است، باید نازل های قفلی، مثلاً نازلهای قفلی كشویی یا نازل یا نازلهای قفلی سوزنی، پیش بینی شوند. این نازلها طوری طراحی شده، كه سوراخ نازل پس از هر مرحله تزریق بسته شده و به این ترتیب از خروج مذاب جلوگیری می شود.
راهگاه
راهگاه یك سیستم متشكل از مسیرهای جریان است كه درآنها مواد قابل جریان از نازل به محفظه قالب راه می یابد.
این سیستم از مخروط راهگاه، كانالهای توزیع و گلویی تزریق تشكیل می شود . در حالات ساده تر، این مسیر های جریان می تواند مثلاً یك سوراخ مخروطی كه مستقیماً به محفظه قالب منتهی می شود خلاصه گردد. نقطه اتصال راهگاه به محفظه قالب را گلویی تزریق می نامند.
شكل راهگاه باید طوری باشد كه توده مذاب از كوتاهترین مسیر ممكن و یا حداقل اتلاف گرما و فشار به محفظه قالب راه یابد. سطح مقطع مسرهای جریان باید طوری اندازه گیری شده بانشد كه پر شدن راهگاه و همچنین محفظه قالب یكنواخت انجام شود.
شكل راهگاه ها
شكل راهگاه ها باید طوری انتخاب شود كه برای حالت ویژه، خواسته مطرح شده برآورد شود. همچنین باید به دیگر عوامل موثر نظیر اجزای فالب، مواد قالب  و نوع قالب تزریق نیز توجه شود.
راهگاه ستونی یا مخروطی
راه گاه های ستونی یا مخروطی بیشتر برای قطعات ریختگی دورانی متقارن و سنگین استفاده می شوند. این راهگاه به جهت اینكه بعداً بریده می شوند، نباید روی سطوح ظاهری ایجاد شوند.
قطر D  باید طوری انتخاب شود كه راهگاه همیشه از قطعه تزریقی آهسته تر خنك شود. بدین ترتیب می توان به این نكته دست یافت كه هنوز مقدار مذاب كافی دیگر می تواند با اعمال فشار نهایی وارد شود.
راهگاه نقطه ای
موقع خروج قطعه كار از قالب، راهگار نقطه ای از محل كوچكترین سطح مقطع برش و به صورت یك نافی كوچك روی قطعه تزریقی . باقی می ماند. به این صورت نیاز به ماشینكاری بعدی نبوده و سطحی كاری به ظاهر نامناسبی نظیر راهگاه ستونی به وجود نخواهد آمد. علاوه بر این باید راهگاه مواد را از پیش محفظه نیز نباید خارج كند.
راهگاه نقطه ای به ویژه برای قطعات كوچك و سری كاری در قالب های یك پارچه و چند پارچه و همچنین برای راهگاه های چند تایی در یك قطعه تزریقی بزرگتر در نظر گرفته می شود. 
هر قدر سوراخ راهگاه نقطه ای كوچكتر باشد، به همان نسبت هم قطع شدن آن ساده تر است. در اینجا باید علاوه بر ضخامت دیواره به چقرمگی (ویسكوزیته) مذاب و همچنین دما دقت شود.
اگر محفظه قالب از طریق راهگاه نقطه ای كوچك، نتواند دیگر با سرعت كافی پر شود، مذاب در پیش محفظه زودتر خنك شده، طوری كه تحت شرایطی باید با دست خارج شود.
به این ترتیب پیش محفظه كمی بزرگتر می شود، طوری كه مواد خنك شده چسبیده به جدار داخلی به عنوان یك لایه عایق عمل می كند  . هسته مذاب (به اصطلاح بستر خمیری) در محدوده راهگاه بهصورت مایع باقی می ماند. اما تاخری زمانی مذاب در پیش محفظه نباید طولانی باشد. حداقل چهار تا پنج تزریق در دقیقه برای عملگرد این سیستم لازم است.
در جایی كه این توالی تزریق امكان پذیر نیست، یك كلگی مسی سوراخ شده در پیش محفظه گذاشته می شود. فضای بنی كلگی مسی و جداره داخلی پیش محفظه با مواد خنك شده پر و به عنوان عایق پیش محفظه با مواد خنك شده پر و به عنوان عایق عمل می كند. كلگی مسی ا زطریق نازل، گرمای كافی دریافت كرده تا مواد میانی را به صورت مذاب نگهدارد .
اقدام ممكن بعدی برای جلوگیری از خنك شدن مواد قالب این است كه پیش محفظه به وسیله چند فشنگی حرارتی گرم شود  .
راهگاه بشقابی با پولكی
راهگاه های بشقابی با پولكی برای قطعات تزریقی حلقوی پیش بینی می شوند. اگر در اینجا از یك یا دو راهگاه نقطه ای استفاده می شد یك درز اتصال یا درز جریان به وجود می آمد. دو جریان مواد به دلیل خنك شدن زودتر، دیگر به نحو مطلوب به یكدیگر جوش نمی خورند و این درز اتصال به وجود می آید. هر قدر جریان مواد برخورد كننده سردتر باشد، به همان نسبت درزهای اتصال بهتر دیده می شود. استحكام درز اتصال كمتر است.
اگر جریان های مواد بر روی یك ماهیچه باید تقسیم و دوباره به یكدیگر مرتبط شوند، باز هم درز های اتصال به وجود می آید.
راهگاه چتری
راهگاه های چتری برای قطعات تزریقی كوتاه بوش مانند به كار می روند .
راهگاه حلقوی
در قطعات تزریقی كه ماهیچه از هر دو طرف مهار می شود باید از یك راهگاه حلقوی استفاده كرد
به این طریق می توان قطعات تزریقی بوش مانند نسبتاً بلند با دیوارهای یكنواخت و هم ضخامت را تولید كرد.
راهگاه فیلمی
بهتر است كه قطعات تخت از طریق یك نوار جانبی یا مركزی، اصطلاحاً راهگاه فیلمی قطع شوند. به این طریق از رفتارهای نامناسب جریان در راهگاه تك نقطه یا از به وجود آمدن درزهای اتصال در راهگاه های چند نقطه جلوگیری می شود .
راهگاه تونلی
در راهگاه تونلی، قطعه تزریقی به طریق جانبی تزریق و موقع باز شدن نیمه های قالب به صورت خودكار از سیستم راهگاه جدا می شود .
كانال توزیع در طول سطح جدایش مستقیماً وارد محفظه قالب نشده، بكله كمی جلوتر به صورت مایع نظیر یك تونل باریك شونده از طریق نیمه قالب سمت نازل وارد حفره می شود. اگر نیمه قالب سمت بستن عقب كشیده شود، بدین ترتیب قطعه تزریقی و سیستم راهگاه باید همراه برده شوند. در اینجا راهگاه تونلی در محل گلویی تزریق قیچی می شود . بالاخره قطعه تزریقی و سیستم راهگاه توسط بیرون انداز از قالب خارج می شوند.
اگر یك راهگاه تونلی پیش بینی شود، باید توجه شود كه كانال های توزیع موقع باز شدن نیمه های قالب باید خمیده شوند. باری اینكه كانالهای توزیع شكسته نشوند، باید مواد قالب چقرمه الاستیك بوده و یا مواد قالب پس از خروج از قالب هنوز منجمد نشده باشند فقط در این صورت سیستم بدون عیب كار می كند...

برای دریافت اینجا کلیک کنید

سوالات و نظرات شما

برچسب ها

سایت پروژه word, دانلود پروژه word, سایت پروژه, پروژه دات کام,
Copyright © 2014 nacu.ir
 
Clicky